CORNING Evolant®

Passive Design for RFoG Networks

Mark Conner Market Development Manager – Access 18 March 2009 SCTE Piedmont Chapter Meeting

Agenda

- Why all-fiber access?
- RFoG overview
 - What and why RFoG?
 - Network elements
 - A look at the R-ONU
 - Compare to GPON and EPON
- All-fiber access
 - Architectures
 - Current deployment methods

Evolant

- Migration

CORNING

REMEMBER:

RFoG is a work in progress

It has come a long way

But it has not been through balloting

Many parameters are still being worked through

What All-Fiber?

- Bandwidth supply/demand
- Competition
- Reduce operating costs
- In greenfield deployments, reduce long term total cost
 - Avoids major rebuild by deploying fiber first
- All-fiber access can be a universal strategy
 - Commercial
 - Residential

Bandwidth – Movin' On Up!

Data Source: FCC. Speeds are based on DSL & FTTL data. Excludes mobile wireless broadband

Evolant[®]

CORNING

What & Why RFoG?

- RFoG is ...
 - All-fiber access technology that leverages fiber to the subscriber and is compatible with the MSO back office / equipment
- RFoG leverages the MSO framework
 - Same headend gear
 - Same CPE

CORNING

- Designed to allow co-existent overlays
- RFoG simplifies & reduces costs such as ...
 - Minimizes/eliminates system power bills, outages due to power failures
 - No "adjustments" needed in the outside plant (i.e. amp balancing)
 - Eliminates annual proof performance (fly-overs, leakage testing)
 - Return path ingress issues no longer apply

Evolanť

What are the RFoG Elements?

Evolant[®]

CORNING

What are the RFoG Elements?

R-ONU Close-Up

CORNING

Evolant[®]

Wavelength Line-Up

• EPON (IEEE 802.3ah) and GPON (ITU-T G.984)

1550 nm

- Downstream: 1490 nm
- Upstream: 1310 nm
- Video (RF): 1550 nm
- 10GEPON (802.3av):
 - Downstream: 1577 nm

Evolant

- Upstream: 1270 nm
- Video (RF):
- RFoG

CORNING

- Downstream (Video): 1550 nm
- Upstream: 1310 nm or 1610 nm

RFoG Wavelength Selection

- Downstream is straightforward
 - Same 1550 RF wavelength used with GPON and EPON
 - RF carriers video, data and voice
- Upstream has several options
 - 1310 is least expensive, but does not allow coexistence with xPON
 - 1590 was an early choice to allow coexistence, but was also in 10GEPON standard
 - 1610 is the primary wavelength
 - 1310 recognized as option

Evolant

CORNING

What's Next in SCTE IPS WG5?

- Key Work Streams
 - Wavelength and isolation
 - Filters, laser performance
 - System loss budget
 - Loss budget analysis, impact on performance
 - R-ONU downstream
 - Output levels
 - Upstream parameters
 - RF levels, OMI, CNR, trigger levels
 - R-ONU physical characteristics
 - Temperature, humidity, powering & more
 - Extended reach/transition nodes
 - Beyond 20 km

Evolant

CORNING

Upcoming Meetings

- 18 March Call
- 22 April Philadelphia

Mapping from HFC to All-Fiber

RFoG Architectures

CORNING

- HFC to All-Fiber Cross Reference
- All-Fiber Architectural Models

RFoG Architectures

- RFoG is architecturally agnostic
- 'Optical Hub'
 - All electronics at head end means all-passive network
 - Some electronics in the field all-fiber, but not all-passive network
- Key is the link specification
 - Loss budget (28 dB)
 - Reach (20 km)
 - Connectors (APC)
- Three main Splitting Strategies
 - Home Run (head end)
 - Centralized (field concentration point)
 - Distributed (multiple field locations)

All-Fiber Access Network and HFC Cross-Reference

CORNING

Evolant[®]

Headend - Home Run Considered for Smaller Deployments

CORNING

Evolant[®]

Local Convergence – Centralized Splitting Excellent in Large-Scale Deployments

Distributed Splitting Alternative for Low Density and Rural Deployments

CORNING

Evolant[®]

Design

- Bottoms-up Methodology
- Port Count & Drop Length

Bottoms-up Methodology

- 1. Define network access point (NAP) groups
 - Strive for symmetry and uniform size ("fours")
 - Minimize drop length (reduce drop labor and material)
- 2. Join NAPs into distribution cables
 - Minimize number of cables (reduce placement cost)
 - Right-size fiber counts
- 3. Define local convergence point (LCP) service areas
 - Use multiple LCPs small service areas
 - Small areas minimize cable lengths and fiber counts
 - Allocate space for future network growth
- 4. Determine transport path

Evolant

CORNING

Bottoms-up Methodology

CORNING Evolant[®]

Mapping All-Fiber Design to HFC

© 2009 Corning Cable Systems LLC

Corning Incorporated 21

Evolant[®]

CORNING

Deployment Scenarios

- RFoG Only
- Overlay
- Managing the Network
- Residential & Commercial Services

RFoG & More

- Initial deployment as RFoG only
 - Standard RF capability
 - Voice, video and data
 - DOCSIS 2.0 or 3.0
- Overlay with EPON, GPON or 10G version
 - xPON adds data capacity
 - Coexists w/RFoG
 - RF continues to deliver video, voice
 - Commercial and residential opportunities
- Evolutionary Scenarios
 - Low cost & swap

CORNING

- Pre-provision (wavelength, expansion port)
- Premium all upfront

Evolanť

Managing Evolution

- Objectives
 - Subscriber management
 - Requires only basic skills no splicing
 - Migration to expanded data in one truck roll
 - Technology migration
 - Change just the active devices at the ends
 - Change from optical splitting to wavelength multiplexing
 - Subscriber location
 - One field location

Moving from RFoG to RFoG with Overlay

- Disconnect from RFoG-only splitter
- Make new connection to splitter w/RFoG and xPON
- Proceed to customer's house and make any equipment changes
- Architecture/splitter placement strategy is key enabler for future network flexibility

Evolant°

CORNING

Migration

- Leverage existing fibers to extend all-fiber services
 - Requires one fiber per 32 homes
 OR
 - add local hub in the case of limited fiber availability
- HFC first, all-fiber future
 - Provision at least one fiber per 32 homes passed
 - Build distribution from node to homes
 - Convert node to LCP

Conclusion

CORNING

- RFoG leverages existing MSO equipment while building an all-fiber foundation
- Eliminate/minimize powering, testing and maintenance costs
- Select splitting architecture for best flexibility
- Build once; design to standard passive parameters
- Evolve capacity through technology overlay
 - EPON, GPON; future 10GEPON, 10GPON
 - Residential and commercial

Evolant

Program for migration – provision optical fibers for all-fiber access